
Best Practices in Bridge Management

Best Practices in Bridge Management

Major Points

- Unprecedented Funding for Rural Bridges
- Inventory Management Considerations
- Risk Based Methodology

Future Funding – IIJA and Other

Funding Sources

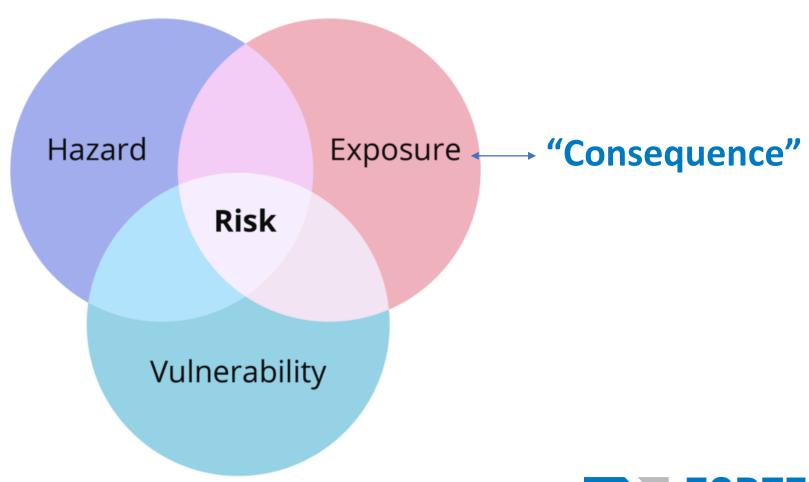
- Off-System Bridge Program + IIJA B.I.P. Program
 - Formula and Grant Component, Designed to oust poor bridges
- HB 514 Vehicle Sales Tax for Transportation
- American Rescue Plan Stimulus, State Surplus
- Other programs slated toward drainage

\$27.5B formula funds over five years (\$5.5B/year)

Louisiana to receive \$1B over five years (\$200M/year)

States required to utilize 15% for off-system bridges; federal cost share is 100%

Louisiana required to utilize at least \$150M over five years (\$30M/year)


Management

Which to Replace?

- Historically consider Sufficiency Rating
- Pick bridge from List with SR < 50
- Condition, Importance, Political Interests all factors

Risk-Based Approach

Risk-Based Management Approach Terms:

Hazard – Thing imparting forces

Vulnerability – Things ability to take on forces

Exposure or Consequences – Thing that happen as a result of forces being imparted on vulnerable things

Risk – The cost/priority/rank of imparting forces on vulnerable things with resulting consequences

Risk-Based Management Approach

Consequence

Risk = Hazard x Vulnerability x Consequence

Risk-Based Management Approach Example

Hazard – Bad Windstorm Damaged Structure

Vulnerability – Poorly Constructed Critical Care Bldg.

X

Consequences – Critical Care Is Important

Risk – Structure Damaged, But Care was Ceased Because Windows Blown In and Power Went Out, Therefore, People Died and Disruption

In Services. Human and Financial Loss

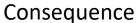
Risk-Based Management Approach Example

Hazard – Wide Range of Storms and Probability

Vulnerability – Wide Range of Possible Bldg. Damages

X

Consequences – Wide Range of Resulting Issues


Risk – Probabilistic Estimation to Steer Decisions

Risk-Based Management Approach

Vulnerability

Risk-Based Management Approach Bridges

Hazard – Trucks/Cycles

X

Load Rating

Vulnerability – Aging Timber Structure

X

Consequences – Serves 150 \$\$\$ producing Well Sites

Risk – Truck loads > Bridge capacity to handle, therefore posted bridge prevents trucks from servicing well sites. Financial Loss

Risk-Based Management Approach Bridges

Consequence Considerations for Bridges

- 1. Isolate road condition, assume perfect condition
- 2. ADT a dependent variable
- 3. A variety of independent variables (infinite)
 - Alternative Route Length
 - Dead End Route
 - Collector Route
 - Life Safety Considerations
 - Fire/Police
 - Hospitals
 - Economic Factors (and now Social)
 - Industry in Proximity
 - Farming

Risk-Based Management Approach Bridges

Take-Aways:

- 1. Hazard x Vulnerability = Load Rating
- 2. Consider Consequences to Accelerate or Attenuate Bridges in a List
- 3. Use Prioritized List for Replacement/Repair Priority and Focused Management

